By Math Original No comments
Trigonometric equations

What is a trigonometric equation?

A trigonometric equation is any equation that contains a trigonometric function otherwise from trigonometric identities that are true for any angle a trigonometric equation may be true only for some certain angles in some cases.

Solving Trigonometric Equations

How to solve the equation $ \displaystyle \sin x=a$?

Step 1: We find an angle $ \displaystyle \alpha $ that its sinuses is equal to $ \displaystyle a$. (if an angle like thisexists)

Step 2: Another angle that has the sinuses to $ \displaystyle a$is the angle $ \displaystyle 18{{0}^{\circ }}-\alpha $.

Step 3: All the solutions of the equation $ \displaystyle \sin x=a$ are:

$ \displaystyle x=k\cdot {{360}^{\circ }}+\alpha $

$ \displaystyle x=k\cdot {{360}^{\circ }}+18{{0}^{\circ }}-\alpha $   where $ \displaystyle k\in Z$.

Using $ \displaystyle \pi $ instead of degrees the solutions can be written like:

$ \displaystyle x=2k\pi +\alpha $

$ \displaystyle x=2k\pi +\pi -\alpha $ where $ \displaystyle k\in Z$

Tip! To find the value of $ \displaystyle \alpha $ we can use the calculator, the table of the angles of the four basic functions or from the graph of the trigonometric function.

Example 1: Solve the equation $ \displaystyle \sin x=\frac{1}{2}$.

Step 1: An angle that is known to have the sinuses $ \displaystyle \frac{1}{2}$ is $ \displaystyle \alpha =3{{0}^{\circ }}$.

Step 2: Another angle that has the same sinuses is $ \displaystyle 18{{0}^{\circ }}-3{{0}^{\circ }}=150$.

Step 3: All the angles that has the sinuses $ \displaystyle \frac{1}{2}$ are:

$ \displaystyle x=k\cdot {{360}^{\circ }}+3{{0}^{\circ }}$ and $ \displaystyle x=k\cdot {{360}^{\circ }}+{{150}^{\circ }}$, or $ \displaystyle x=2k\pi +\frac{\pi }{6}$ and $ \displaystyle x=2k\pi +\frac{{5\pi }}{6}$, where $ \displaystyle k\in Z$

Note! By substituting k with different integers we get the solutions of our equation above:

$ \displaystyle k=1$ then $ \displaystyle \left\{ {{{{390}}^{\circ }}{{{,510}}^{\circ }}} \right\}$

$ \displaystyle k=-1$ then $ \displaystyle \left\{ {-{{{330}}^{\circ }},-{{{210}}^{\circ }}} \right\}$

Example 2: Solve the equation $ \displaystyle \sin 3x=\frac{1}{2}$.

$ \displaystyle \alpha =3{{0}^{\circ }}$

$ \displaystyle 3x=k\cdot {{360}^{\circ }}+3{{0}^{\circ }}$

$ \displaystyle x=k\cdot {{120}^{\circ }}+{{10}^{\circ }}$ and $ \displaystyle 3x=k\cdot {{360}^{\circ }}+{{150}^{\circ }}$

$\displaystyle x=k\cdot {{120}^{{}^\circ }}+{{50}^{{}^\circ }},~~k\in Z$

So the solutions of the equations are: $ \displaystyle x=k\cdot {{120}^{\circ }}+{{10}^{\circ }}$

$\displaystyle x=k\cdot {{120}^{{}^\circ }}+{{50}^{{}^\circ }}$$ \displaystyle k\in Z$ 

How to solve the equation $ \displaystyle \cos x=b$?

Step 1: We find an angle $ \displaystyle \alpha $ that its cosine is equal to $ \displaystyle b$ (if an angle like this exists)

Step 2: Another angle that has the cosine to $ \displaystyle b$ is the angle $ \displaystyle -\alpha $

Step 3: All the solutions of the equation $ \displaystyle \cos x=b $are:

$ \displaystyle x=k\cdot {{360}^{\circ }}\pm \alpha $ or $ \displaystyle x=2k\pi \pm \alpha $, $ \displaystyle k\in Z$

Example 3: Solve the equation $ \displaystyle \cos x=-\frac{1}{2}$.

Step 1: An angle that is known to have the cosine $ \displaystyle -\frac{1}{2}$is $ \displaystyle \alpha ={{120}^{\circ }}$

Step 2: Another angle that has the same cosine is $ \displaystyle -\alpha =-{{120}^{\circ }}$

Step 3: All the angles that has the cosine $ \displaystyle -\frac{1}{2}$ are :

$ \displaystyle x=k\cdot {{360}^{\circ }}+{{120}^{\circ }}$ and $ \displaystyle x=k\cdot {{360}^{\circ }}-{{120}^{\circ }}$ 

or $ \displaystyle x=2k\pi +\frac{{2\pi }}{3}$ and $ \displaystyle x=2k\pi -\frac{{2\pi }}{3}$

Example 4: Solve the equation $ \displaystyle \cos (-2x)=\frac{1}{2}$.

$ \displaystyle \alpha =6{{0}^{{}^\circ }}$

$ \displaystyle x=k\cdot-{{180}^{\circ }}-{{30}^{\circ }}$ o$ \displaystyle -2x=k\cdot {{360}^{\circ }}-{{60}^{\circ }}$ and $ \displaystyle -2x=k\cdot {{360}^{\circ }}+{{60}^{\circ }}$

$ \displaystyle x=k\cdot -{{180}^{\circ }}+{{30}^{\circ }}$

Note! By substituting k with different integers we get the solutions of our equation above:

$ \displaystyle k=1$, $ \displaystyle \left\{ {{{{480}}^{\circ }}{{{,240}}^{\circ }}} \right\}$

$ \displaystyle k=-1$, $ \displaystyle \left\{ {-{{{240}}^{\circ }},-{{{480}}^{\circ }}} \right\}$

How to solve the equation $ \displaystyle \tan x=c$?

Step 1: We find an angle $ \displaystyle \alpha $ that its tangents is equal with $ \displaystyle c$.

Step 2: All the angles that has the tangent $ \displaystyle c$ are:

$ \displaystyle x=k\cdot {{180}^{{}^\circ }}+\alpha $ o$ \displaystyle x=k\pi +\alpha $  $ \displaystyle k\in Z$

Example 5: Solve the equation $ \displaystyle tgx=\sqrt{3}$.

Step 1: An angle that is known to have the tangent $ \displaystyle \sqrt{3}$ is $ \displaystyle \alpha ={{60}^{\circ }}$

Step 2: All the angles that has the tangent $ \displaystyle \sqrt{3}$ are:

$ \displaystyle x=k\cdot {{180}^{\circ }}+\alpha $ o$ \displaystyle x=k\pi +\alpha $

Example 6: Solve the equation $ \displaystyle tg3x=-1$.

$ \displaystyle \alpha =13{{5}^{{}^\circ }}$

$ \displaystyle 3x=k\cdot {{180}^{\circ }}+13{{5}^{{}^\circ }}$ and $ \displaystyle x=k\cdot {{60}^{\circ }}+{{45}^{\circ }}$ 

o$ \displaystyle 3x=k\pi +\frac{{3\pi }}{4}$ and $ \displaystyle x=k\frac{\pi }{3}+\frac{\pi }{4}$

Copyright   © Math Original